Character-based Neural Semantic Parsing

What did we learn and where do we go next?

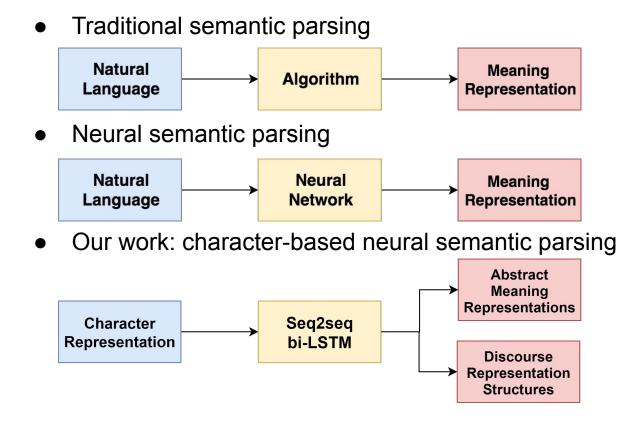
Rik van Noord

PhD-thesis 2016-2020

Advisors: Johan Bos and Antonio Toral

Goal: Create neural methods to produce structured meaning representations

Character-based Neural Semantic Parsing

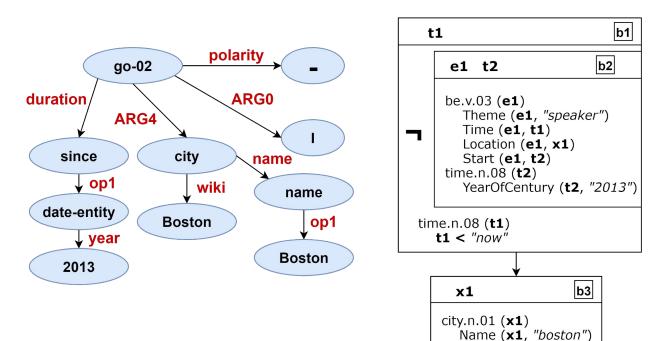


Meaning representations

AMR

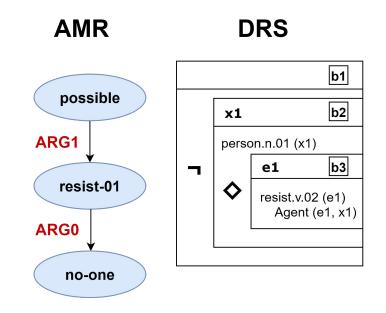
I haven't been to Boston since 2013.

DRS

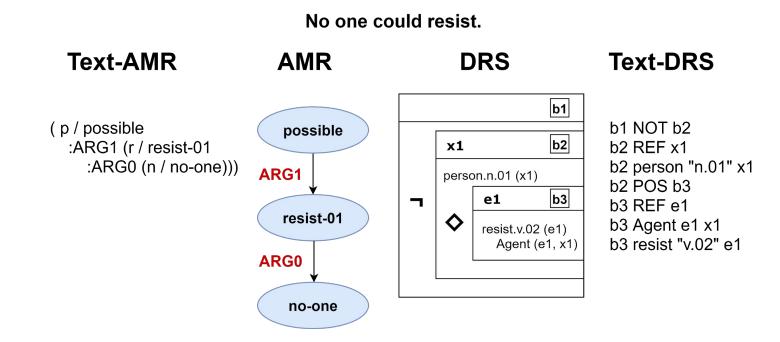


Meaning representations

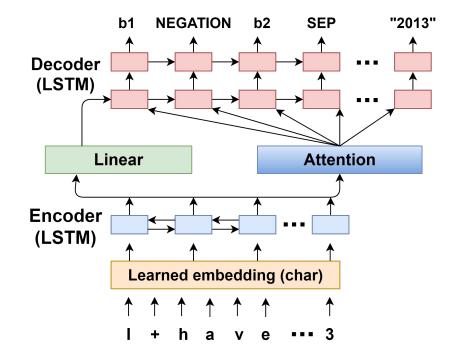
No one could resist.



Text-based meaning representations



Sequence-to-sequence model



Character-level models

Input: ^ i + h a v e n ' t + b e e n + t o + ^ b o s t o n + s i n c e + 2 0 1 7 .

AMR: (possible + :ARG1 + (resist-01 + :ARG0 + (no-one)))

Data sets

• Semantic parsing data sets are quite small

• **AMR:** LDC2017T10 with 36,521 gold standard examples

- **DRS:** PMB release 2.1.0 with 3,998 gold standard examples
 - Experiments only on English for data see pmb.let.rug.nl

Finding 1: Character-level models work surprisingly well!

Outperformed word-level models for both AMR and DRS

Also outperformed BPE for DRS parsing

Takeaway: characters can be an interesting baseline

Why do characters work so well?

- No assumptions fed to the model
- Can deal with spelling errors
- Can model and learn inflections
- Can deal with unknown words

Why do characters work so well?

- No assumptions fed to the model
- Can deal with spelling errors
- Can model and learn inflections
- Can deal with unknown words

But if this was universally true, everybody would be using characters already

Why do characters work so well?

- No assumptions fed to the model
- Can deal with spelling errors
- Can model and learn inflections
- Can deal with unknown words

But if this was universally true, everybody would be using characters already

- Impossible to learn large vocabularies for small data sets
- At least for characters, we get to do lots of updates for each character

Finding 2: It helps to rewrite variables to a different representation

Original:

b1 NOT b2 b2 REF x1 b2 person "n.01" x1 b2 POS b3 b3 REF e1 b3 Agent e1 x1 b3 resist "v.02" e1

Finding 2: It helps to rewrite variables to a different representation

Original:

b1 NOT b2
b2 REF x1
b2 person "n.01" x1
b2 POS b3
b3 REF e1
b3 Agent e1 x1
b3 resist "v.02" e1

Finding 2: It helps to rewrite variables to a different representation

Original:

b1 NOT b2
b2 REF x1
b2 person "n.01" x1
b2 POS b3
b3 REF e1
b3 Agent e1 x1
b3 resist "v.02" e1

Absolute:

\$0 NOT \$1
\$1 REF @1
\$1 person "n.01" @1
\$1 POS \$2
\$2 REF @2
\$2 Agent @2 @1
\$2 resist "v.02" @2

Finding 2: It helps to rewrite variables to a different representation

Original:

b1 NOT b2
b2 REF x1
b2 person "n.01" x1
b2 POS b3
b3 REF e1
b3 Agent e1 x1
b3 resist "v.02" e1

Absolute:

\$0 NOT \$1
\$1 REF @1
\$1 person "n.01" @1
\$1 POS \$2
\$2 REF @2
\$2 Agent @2 @1
\$2 resist "v.02" @2

Relative:

b1 NOT b2 b2 REF x1 b2 person "n.01" x1 b2 POS b3 b3 REF e1 b3 Agent e1 x1 b3 resist "v.02" e1

Finding 2: It helps to rewrite variables to a different representation

Original:

b1 NOT b2
b2 REF x1
b2 person "n.01" x1
b2 POS b3
b3 REF e1
b3 Agent e1 x1
b3 resist "v.02" e1

Absolute:

\$0 NOT \$1
\$1 REF @1
\$1 person "n.01" @1
\$1 POS \$2
\$2 REF @2
\$2 Agent @2 @1
\$2 resist "v.02" @2

Relative:

\$NEW NOT \$NEW \$0 REF @NEW \$0 person "n.01" @0 \$0 POS \$NEW \$0 REF @NEW \$0 Agent @0 @-1 \$0 resist "v.02" @0

Finding 2: It helps to rewrite variables to a different representation

Original:	
b1 NOT b2	
b2 REF x1	
b2 person "n.01" x1	
b2 POS b3	
b3 REF e1	
b3 Agent e1 x1	
b3 resist "v.02" e1	

Absolute:

\$0 NOT \$1
\$1 REF @1
\$1 person "n.01" @1
\$1 POS \$2
\$2 REF @2
\$2 Agent @2 @1
\$2 resist "v.02" @2

Relative:

\$NEW NOT \$NEW
\$0 REF @NEW
\$0 person "n.01" @0
\$0 POS \$NEW
\$0 REF @NEW
\$0 Agent @0 @-1
\$0 resist "v.02" @0

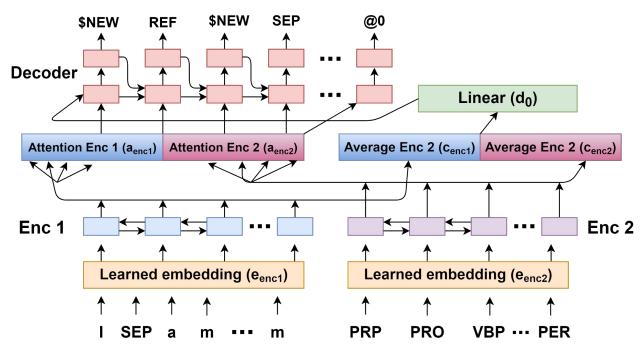
Takeaway: Important to take care of your variables

Finding 3: using silver data improves performance a lot

- Self-training or using a different parser
- Pretrain on gold + silver, finetune on gold
- There is a limit to improved performance

For **AMR**: F-score of 64 to 71 For **DRS**: F-score of 78 to 84

Idea: improve performance using linguistic features



	Gold
Baseline	78.6
+ LEM	+1.3
+ SEM	+1.9
+ POS	+2.2
+CCG	+2.4
+DEP	+2.7

	Gold	Gold + silver	
Baseline	78.6	84.5	
+ LEM	+1.3	+1.1	
+ SEM	+1.9	+1.0	
+ POS	+2.2	+1.1	
+CCG	+2.4	+0.9	
+DEP	+2.7	+0.6	

Takeaway: important to use silver data to create a strong baseline

	Gold	Gold + silver
Baseline	78.6 84.5	
+ LEM	+1.3	+1.1
+ SEM	+1.9	+1.0
+ POS	+2.2	+1.1
+CCG	+2.4	+0.9
+DEP	+2.7	+0.6

Takeaway: important to use silver data to create a strong baseline

Unpublished result: tried multi-task learning with AMR and DRS

In short: always better to add silver data instead of data from the other formalism

But now there are pretrained language models!

Are characters still useful?

Paper in a nutshell

We know character-level representations did well on semantic parsing before pretrained LMs, but are they still useful now?

Yes!

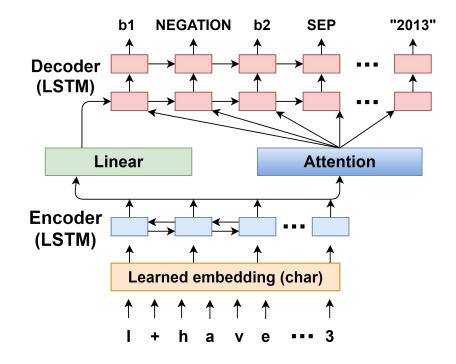
Paper in a nutshell

We know character-level representations did well on semantic parsing before pretrained LMs, but are they still useful now?

Yes!

- Two methods of **combining** characters with pretrained LMs
- Significant improvements for AMR and especially DRS parsing
- Robust across languages, language models and data sets

Original system



Baselines

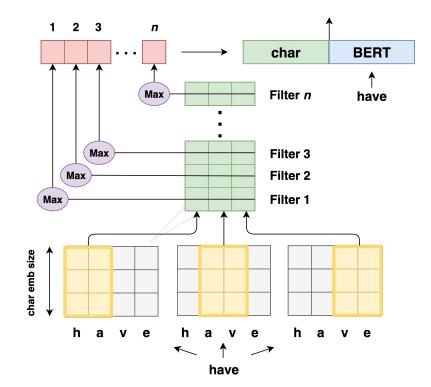
	DRS	AMR
Char	86.1	65.2
Word	85.3	62.2
ELMo	87.3	66.7
BERT-base	87.6	69.5
BERT-large	87.5	68.5
RoBERTa-base	87.0	67.1
RoBERTa-large	86.8	66.2

Baselines

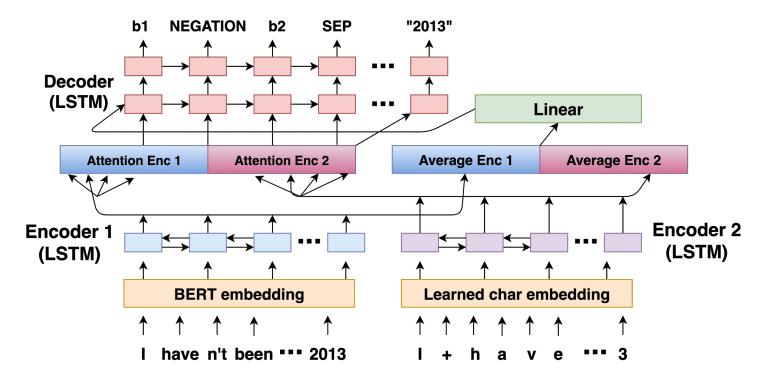
	DRS	AMR
Char	86.1	65.2
Word	85.3	62.2
ELMo	87.3	66.7
BERT-base	87.6	69.5
BERT-large	87.5	68.5
RoBERTa-base	87.0	67.1
RoBERTa-large	86.8	66.2

Can we combine characters with BERT?

Characters in one encoder: char-CNN



Characters in two encoders



Adding characters to BERT-base

	Baseline	+ char (1 enc)	+ char (2 enc)
DRS	87.6	88.1	88.1
AMR	70.5	71.0	70.4

All scores are averages of 5 runs

Adding characters to BERT-base

	Baseline	+ char (1 enc)	+ char (2 enc)
DRS	87.6	+0.5	+0.5
AMR	70.5	+0.5	-0.1

All scores are averages of 5 runs

Adding characters to LMs - DRS

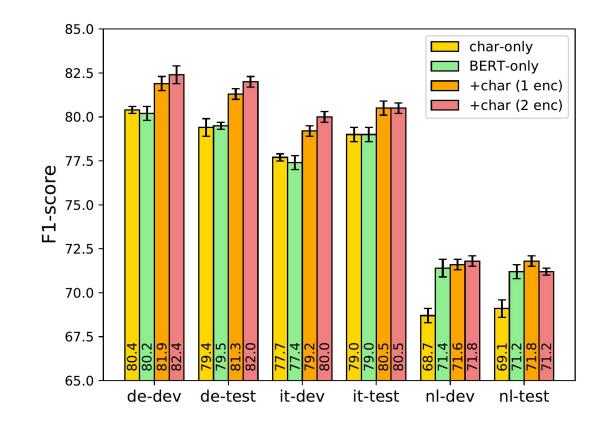
	Baseline	+ char (1 enc)	+ char (2 enc)		
BERT-base	87.6	+0.5	+0.5		
BERT-large	87.5	+0.7	+0.2		
ELMo	87.3	+0.3	+0.5		
RoBERTa-base	87.0	+0.3	+0.8		
RoBERTa-large	86.8	+0.0	+0.2		

What about other (linguistic) features?

BERT	87.6		
BERT + char (1 enc)	+0.5		
BERT + char (2 enc)	+0.5		
BERT + GloVe	+0.3		
BERT + FastText	+0.2		
BERT + POS	+0.0		
BERT + SEM	+0.3		
BERT + LEM	+0.2		
BERT + DEP	+0.3		
BERT + CCG	+0.2		

BERT	87.6	
BERT + char (1 enc)	+0.5	
BERT + char (2 enc)	+0.5	
BERT + GloVe	+0.3	
BERT + FastText	+0.2	
BERT + POS	+0.0	
BERT + SEM	+0.3	
BERT + LEM	+0.2	
BERT + DEP	+0.3	
BERT + CCG	+0.2	

What about other languages?



Main findings

Finding 1: Characters can be used in combination with LMs

Finding 2: They might be better than other extra resources

Finding 3: Improvements are robust across languages, LMs and formalisms

Main findings

Finding 1: Characters can be used in combination with LMs

Finding 2: They might be better than other extra resources

Finding 3: Improvements are robust across languages, LMs and formalisms

We should model characters in LMs, we just don't know how to do it efficiently

CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters

Hicham El Boukkouri¹, Olivier Ferret², Thomas Lavergne¹, Hiroshi Noji³, Pierre Zweigenbaum¹, Junichi Tsujii³

CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation

Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting Google Research

ByT5: Towards a token-free future with pre-trained byte-to-byte models

Linting Xue* Aditya Barua* Noah Constant* Rami Al-Rfou* Sharan Narang Mihir Kale Adam Roberts Colin Raffel Google Research

Chinese DRS parsing

- Work of PhD-student Chunliu Wang, will be presented at ACL 2021
- Interesting: Chinese characters already contain meaning
- Vocabulary is a lot larger, so closer to word-level

Findings are similar: characters outperform both word-level and BPE models

What's next for semantic parsing?

We should use the meaning representations for something!

Future

Use semantic parsing for downstream applications

- Was always the goal of open domain semantic parsing
- English AMR parsing has higher scores than human agreement

Other potential use cases of semantic parsing

- Explainability DRSs provide a grounded representation
- Evaluation perhaps to give a general check of the semantics

What formalism has the most potential?

• LMs solve the easy cases, semantic parsing needed for the hard ones

Don't underestimate the power of characters!

Contact:

- @RikVanNoord
- www.rikvannoord.nl, rikvannoord@gmail.com

DRS-to-text generation

• Also work of Chunliu Wang, will present at GEM workshop 2021

• 5 DRS challenge sets

- **Original** : Tom has three thousand books.
- Tense : Tom had three thousand books.
- Polarity : Tom does not have three thousand books.
- Named entities : Kirk has three thousand books.
- Grammatical num: Tom has one book.
- Quantities : Tom has 3,200 books.
- New annotation/evaluation metric **ROSE** (Robust Overall Semantic Evaluation)
 - Semantics, Grammaticality, Phenomenon

DRS-to-text output examples

	Reference text	Generated text	Sem.	Gram.	Phen.	ROSE
(a)	She liked short skirts.	She liked short tomical.	0	0	1	0
(b)	Tom does not have three thousand books.	Tom never has three thousand books.	0	1	1	0
(c)	The small skirt will be pink.	The small skirt was pink.	0	1	0	0
(d)	He left 157 minutes ago.	He left fifteen minutes ago.	0	1	0	0
(e)	I checked it nine times.	I checked it nine.	0	0	1	0
(f)	We are painting the house green.	I paint the house green.	1	1	1	1
(g)	That hat cost around fifty dollars.	This hat cost about 50 dollars.	1	1	1	1
(h)	When I painted this picture, I was	I painted the picture when I was	1	1	1	1
	23 years old.	twenty-three years old.				