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Character-based Neural Semantic Parsing

e Traditional semantic parsing

Natural Algorithm Meaning _
Language Representation
e Neural semantic parsing
Natural Neural Meaning _
Language Network Representation

e Our work: character-based neural semantic parsing
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Meaning representations

No one could resist.
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Text-based meaning representations

No one could resist.
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Sequence-to-sequence model
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https://app.diagrams.net/?page-id=l9Pq_8WhjYyb9cDHUk7M&scale=auto#G1GikpoQuLr7HLS7bj3YRqhVh0N_nkGuto

Character-level models

Input: * i+ haven‘t+been+to+
Aboston+since+2017.

AMR:(possible+ ARG1+(resist-01
+ . ARGO + (no-one)))

DRS: b1 NOT b2 *** b2 REF x1 ** b2 + person+
“n.01"“+ x1** b2 POS b3 ** b3 REF e1 *** b3
Agent el x1 ** b3 +resist +“v.02°"+ e



Data sets

e Semantic parsing data sets are quite small

e AMR: LDC2017T10 with 36,521 gold standard examples

e DRS: PMB release 2.1.0 with 3,998 gold standard examples

o Experiments only on English - for data see pmb.let.rug.nl



Main Findings

Finding 1: Character-level models work surprisingly well!

Outperformed word-level models for both AMR and DRS
Also outperformed BPE for DRS parsing

Takeaway: characters can be an interesting baseline
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Why do characters work so well?

No assumptions fed to the model
Can deal with spelling errors
Can model and learn inflections
Can deal with unknown words
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Why do characters work so well?

e No assumptions fed to the model
e Can deal with spelling errors

e (Can model and learn inflections
e (Can deal with unknown words

But if this was universally true, everybody would be using characters already

e Impossible to learn large vocabularies for small data sets
e At least for characters, we get to do lots of updates for each character



Main Findings
Finding 2: It helps to rewrite variables to a different representation

Original:

b1 NOT b2

b2 REF x1

b2 person "n.01" x1
b2 POS b3

b3 REF e1

b3 Agent e1 x1

b3 resist "v.02" e1
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Main Findings

Finding 2: It helps to rewrite variables to a different representation

Original: Absolute:

b1 NOT b2 $0 NOT $1

b2 REF x1 $1 REF @1

b2 person "n.01" x1 $1 person "n.01" @1
b2 POS b3 $1 POS $2

b3 REF e1 $2 REF @2

b3 Agent e1 x1 $2 Agent @2 @1

b3 resist "v.02" e1 $2 resist "v.02" @2
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Main Findings

Finding 2: It helps to rewrite variables to a different representation

Original: Absolute: Relative:

b1 NOT b2 $0 NOT $1 b1 NOT b2

b2 REF x1 $1 REF @1 b2 REF x1

b2 person "n.01" x1 $1 person "n.01" @1 b2 person "n.01" x1
b2 POS b3 $1 POS $2 b2 POS b3

b3 REF e1 $2 REF @2 b3 REF e1

b3 Agent e1 x1 $2 Agent @2 @1 b3 Agent e1 x1

b3 resist "v.02" e1 $2 resist "v.02" @2 b3 resist "v.02" e1
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Main Findings

Finding 2: It helps to rewrite variables to a different representation

Original: Absolute: Relative:

b1 NOT b2 $0 NOT $1 $NEW NOT $NEW
b2 REF x1 $1 REF @1 $0 REF @NEW

b2 person "n.01" x1 $1 person "n.01" @1 $0 person "n.01"
b2 POS b3 $1 POS $2 $0 POS $NEW

b3 REF e1 $2 REF @2 $0 REF @NEW
b3 Agent e1 x1 $2 Agent @2 @1 $0 Agent @-1

b3 resist "v.02" e1 $2 resist "v.02" @2 $0 resist "v.02"
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Main Findings

Finding 2: It helps to rewrite variables to a different representation

Original: Absolute:

b1 NOT b2 $0 NOT $1

b2 REF x1 $1 REF @1

b2 person "n.01" x1 $1 person "n.01" @1
b2 POS b3 $1 POS $2

b3 REF e1 $2 REF @2

b3 Agent e1 x1 $2 Agent @2 @1

b3 resist "v.02" e1 $2 resist "v.02" @2

Takeaway: Important to take care of your variables

Relative:

SNEW NOT $NEW
$0 REF @NEW

$0 person "n.01" @0
$0 POS SNEW

$0 REF @NEW

$0 Agent @0 @-1

$0 resist "v.02" @0
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Main Findings
Finding 3: using silver data improves performance a lot

e Self-training or using a different parser
e Pretrain on gold + silver, finetune on gold
e There is a limit to improved performance

For AMR: F-score of 64 to 71
For DRS: F-score of 78 to 84
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Main Findings

Idea: improve performance using linguistic features
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Main Findings
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Main Findings

Takeaway: important to use silver data to create a strong baseline
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Main Findings

Takeaway: important to use silver data to create a strong baseline

Unpublished result: tried multi-task learning with AMR and DRS

In short: always better to add silver data instead of data from the other formalism
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But now there are pretrained language models!

Are characters still useful?
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Paper in a nutshell

We know character-level representations did well on semantic
parsing before pretrained LMs, but are they still useful now?

Yes!
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Paper in a nutshell

We know character-level representations did well on semantic
parsing before pretrained LMs, but are they still useful now?

Yes!

e Two methods of combining characters with pretrained LMs
e Significant improvements for AMR and especially DRS parsing
e Robust across languages, language models and data sets
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Original system
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Can we combine characters with BERT?



Characters in one encoder: char-CNN
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Characters in two encoders
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https://app.diagrams.net/?page-id=l9Pq_8WhjYyb9cDHUk7M&scale=auto#G1nBagn6LDbmi9RKjgT9DsHmwj-T9OGTT5

Adding characters to BERT-base

Baseline + char (1 enc) + char (2 enc)
DRS 87.6 88.1 88.1

AMR 70.5 71.0 70.4

All scores are averages of 5 runs
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Adding characters to BERT-base

Baseline + char (1 enc) + char (2 enc)

DRS

87.6

AMR

70.5

All scores are averages of 5 runs

36



Adding characters to LMs - DRS

Baseline
BERT-base 87.6
BERT-large 87.5
ELMo 87.3
RoBERTa-base 87.0
RoBERTa-large 86.8

+ char (1 enc)

+ char (2 enc)
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What about other (linguistic) features?
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BERT 87.6

BERT + char (1 enc)

BERT + char (2 enc)

BERT + GloVe

BERT + FastText

BERT + POS

BERT + SEM

BERT + LEM

BERT + DEP

BERT + CCG
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BERT

BERT + char (1 enc)

BERT + char (2 enc)

87.6

BERT + GloVe +0.3
BERT + FastText +0.2
BERT + POS +0.0
BERT + SEM +0.3
BERT + LEM +0.2
BERT + DEP +0.3
BERT + CCG +0.2
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What about other languages?
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Main findings
Finding 1: Characters can be used in combination with LMs

Finding 2: They might be better than other extra resources

Finding 3: Improvements are robust across languages, LMs and formalisms
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Main findings
Finding 1: Characters can be used in combination with LMs

Finding 2: They might be better than other extra resources

Finding 3: Improvements are robust across languages, LMs and formalisms

We should model characters in LMs, we just don’t know how to do it efficiently
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CharacterBERT: Reconciling ELMo and BERT for Word-Level
Open-Vocabulary Representations From Characters

Hicham El Boukkouri!, Olivier Ferret?, Thomas Lavergne!, Hiroshi Noji®,
Pierre Zweigenbaum®, Junichi Tsujii®

CANINE: Pre-training an Efficient Tokenization-Free Encoder
for Language Representation

Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting
Google Research

ByTS5: Towards a token-free future with pre-trained byte-to-byte models

Linting Xue* Aditya Barua® Noah Constant® Rami Al-Rfou”
Sharan Narang Mihir Kale Adam Roberts Colin Raffel
Google Research
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Chinese DRS parsing

e Work of PhD-student Chunliu Wang, will be presented at ACL 2021
e Interesting: Chinese characters already contain meaning
e \ocabulary is a lot larger, so closer to word-level

Findings are similar: characters outperform both word-level and BPE models
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What’s next for semantic parsing?



We should use the meaning

representations for something!



Future

Use semantic parsing for downstream applications
e \WVas always the goal of open domain semantic parsing
e English AMR parsing has higher scores than human agreement

Other potential use cases of semantic parsing
e Explainability - DRSs provide a grounded representation
e FEvaluation - perhaps to give a general check of the semantics

What formalism has the most potential?
e LMs solve the easy cases, semantic parsing needed for the hard ones
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Take-home message

Don’t underestimate the power of characters!

Contact: @
e @RikVanNoord y Mavgmﬁ

e www.rikvannoord.nl, rikvannoord@gmail.com pmb.let.rug.nl
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DRS-to-text generation

e Also work of Chunliu Wang, will present at GEM workshop 2021

e 5 DRS challenge sets

Original : Tom has three thousand books.
Tense : Tom had three thousand books.
Polarity : Tom does not have three thousand books.

Named entities : Kirk has three thousand books.
Grammatical num: Tom has one book.
Quantities : Tom has 3,200 books.

e New annotation/evaluation metric ROSE (Robust Overall Semantic Evaluation)
o Semantics, Grammaticality, Phenomenon

O O O O O O
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DRS-to-text output examples

Reference text

Generated text

Sem. Gram. Phen. ROSE

(a) She liked short skirts.
(b) Tom does not have three thousand books.
(c) The small skirt will be pink.
(d) He left 157 minutes ago.
(e) I checked it nine times.
(f) We are painting the house green.
(g) That hat cost around fifty dollars.
(h) When I painted this picture, I was
23 years old.

She liked short tomical.

Tom never has three thousand books.

The small skirt was pink.

He left fifteen minutes ago.

I checked it nine.

I paint the house green.

This hat cost about 50 dollars.

I painted the picture when I was
twenty-three years old.

—_—_—_- 0 O O O

;—s;—sy—mOy—A,—m.—A

1
1
0
0
|
1
1
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= O O O IO

52



